If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^+y^2-15y=0
We add all the numbers together, and all the variables
y^2-13y=0
a = 1; b = -13; c = 0;
Δ = b2-4ac
Δ = -132-4·1·0
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-13}{2*1}=\frac{0}{2} =0 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+13}{2*1}=\frac{26}{2} =13 $
| 5(2x-3)=2-(2x-7) | | 4x^2+12x+30=0 | | 5(x+3)=4(2x+3) | | 5(x-3)=4(2x+3) | | 4x=+2x-6 | | 7+5g=15.75 | | 2x,-2(4x-3)=6-6x | | 5(5x-1)=45 | | 10(x-6)=10x+60 | | 3(×-1)+4x=5x-15 | | x^2-4x+2,04=0 | | 5x+7+8x-26=90 | | 2d/3=2(d-6) | | (X-8)(x-8)*4=1296 | | 5(x-4)=-5x-20 | | 5x-2(3x-6)=17 | | 6(x-3)=10x-18 | | 7(x-5)=12x+20 | | x+5x+(x+108)=415 | | D=2a+6 | | 4p-3=2p+1 | | (5x-9)+(3x-2)+(2x+1)=180 | | G(2+-9x-1)=15 | | 2x^÷3=6 | | 64=p2 | | 4(2q-3)=-12 | | 2x^2÷3=6 | | (-2)^5=x | | 8x+1=8x+29 | | 43=18-4(-4-2w) | | 4+2(y-6)=13 | | 0=6x+77/8 |